
Topoisomerase

DNA Topoisomerases

Review

17, May 28, 2010

DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs

Yves Pommier,^{1,*} Elisabetta Leo,¹ Hong Liang Zhang,¹ and Christophe Marchand¹

¹Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA

*Correspondence: pommier@nih.gov

Reviews

pubs.acs.org/acschemicalbiology

2013

Drugging Topoisomerases: Lessons and Challenges

Yves Pommier*

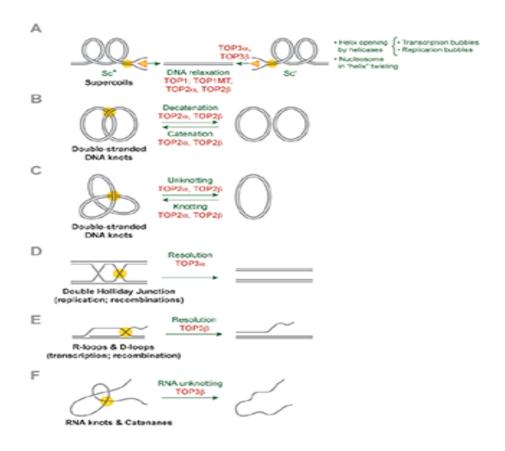
Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States

Review

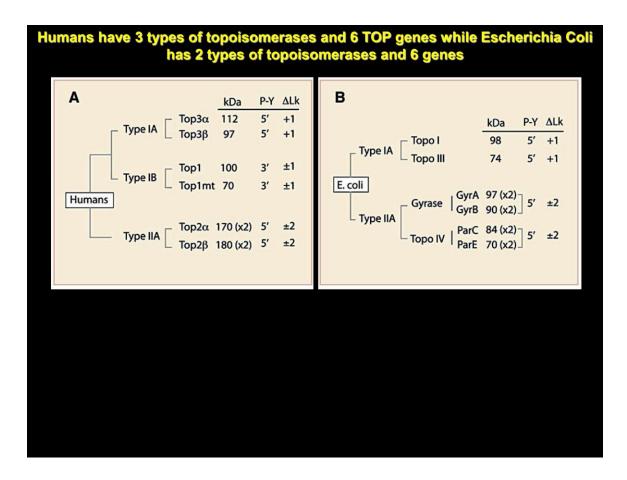
NATURE REVIEWS | MOLECULAR CELL BIOLOGY

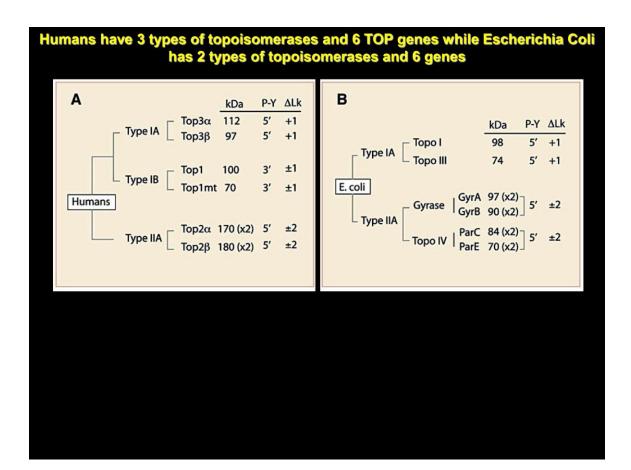
October 2016

Roles of eukaryotic topoisomerases in transcription, replication and genomic stability

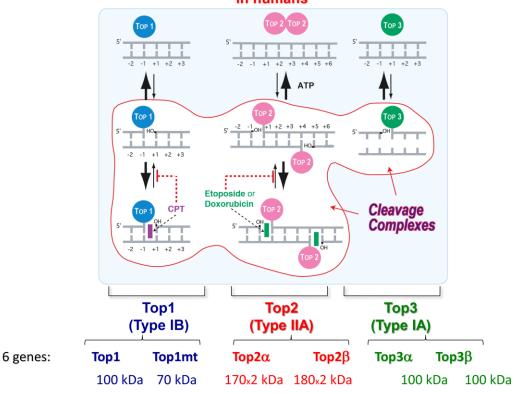

Yves Pommier¹, Yilun Sun², Shar-yin N. Huang¹ and John L. Nitiss²

Abstract | Topoisomerases introduce transient DNA breaks to relax supercoiled DNA, remove catenanes and enable chromosome segregation. Human cells encode six topoisomerases (TOP1, TOP1mt, TOP2 α , TOP2 β , TOP3 α and TOP3 β), which act on a broad range of DNA and RNA substrates at the nuclear and mitochondrial genomes. Their catalytic intermediates, the topoisomerase cleavage complexes (TOPcc), are therapeutic targets of various anticancer drugs. TOPcc can also form on damaged DNA during replication and transcription, and engage specific repair pathways, such as those mediated by tyrosyl-DNA phosphodiesterase 1 (TDP1) and TDP2 and by endonucleases (MRE11, XPF–ERCC1 and MUS81). Here, we review the roles of topoisomerases in mediating chromatin dynamics, transcription, replication, DNA damage repair and genomic stability, and discuss how deregulation of topoisomerases can cause neurodegenerative diseases, immune disorders and cancer.


DNA Topoisomerases And Cancer


Unwinding DNA

Humans vs. Escherichia Coli



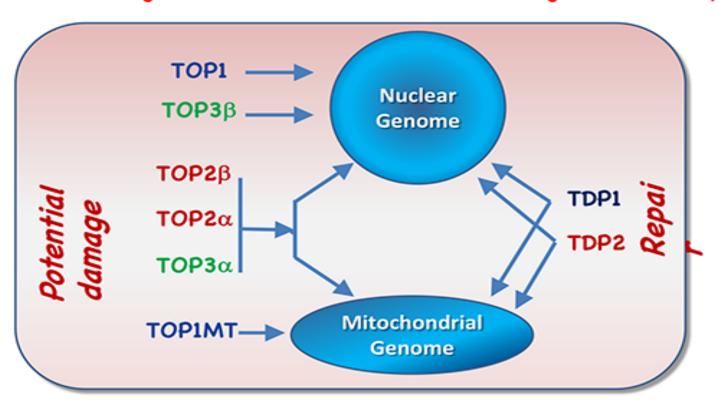
Humans vs. Escherichia Coli

Topoisomerases and TOP Genes in Humans

Not counting SPO11, there are 3 types of topoisomerases and 6 TOP genes in humans

Comparisons

Comparison of the 6 human topoisomerases


Genes	Chromosome	Proteins	Localization	Drugs	Mechanism	Polarity*	Main functions
TOP1	20q12-q13.1	Top1 100 kDa monomer	Nucleus	Camptothecins Indenos (LMPS)	Swivelling controlled	3'-PY	Nuclear supercoiling relaxation
TOP1MT	8q24.3	Top1mt 100 kDa monomer	Mitochondria	none	rotation dsDNA		mitochondrial supercoiling relaxation
TOP2A	17q21-q22	Top2α 170 kDa dimer	Nucleus Mitochondria	Anthracyclines, (doxorubicin)	Strand passage dsDNA	5'-PY	Decatenation/replication
TOP2B	3p24	Top2β 180 kDa dimer	Nucleus Mitochondria	Etoposide mitoxantrone	ATPase	3-71	Transcription; Unknotting
ТОРЗА	17p12-p11.2	Top3α 100 kDa monomer	Nucleus Mitochondria	none	Strand passage within	5'-PY	DNA Replication with BLM**
ТОРЗВ	22q11.22	Top3β 100 kDa monomer	Nucleus cytoplasm	none	single strands	3-P1	RNA topoisomerase with TDRD3

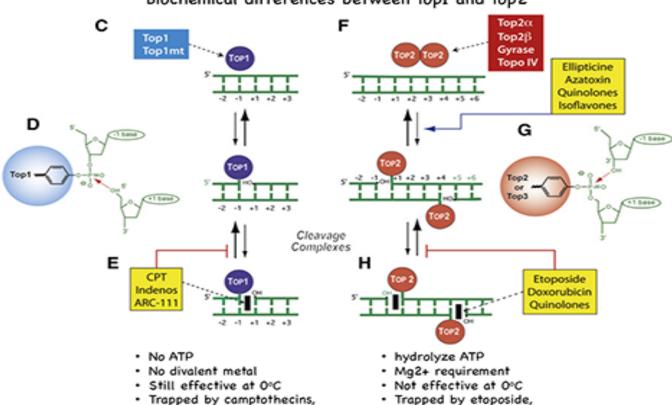
^{*:} Covalent linkage between the catalytic tyrosine and the end of the broken DNA

^{**:} Bloom syndrome, RecQ helicase

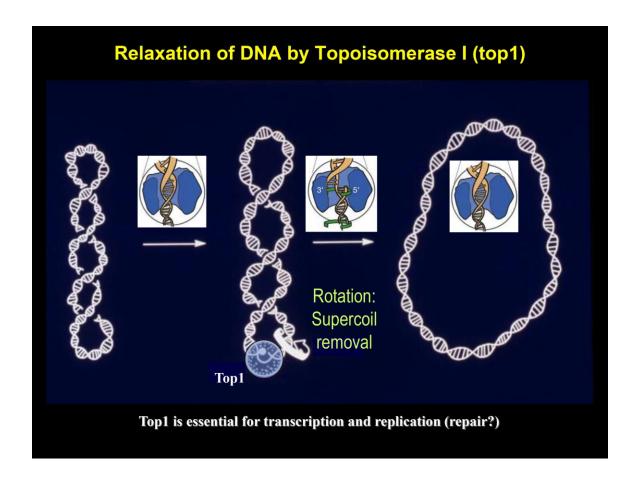
Topoisomerase and genomes

Topoisomerases and tyrosyl DNA phosphodiesterases (TDPs) handle both the nuclear and mitochondrial genomes and their imbalance is source of genomic instability

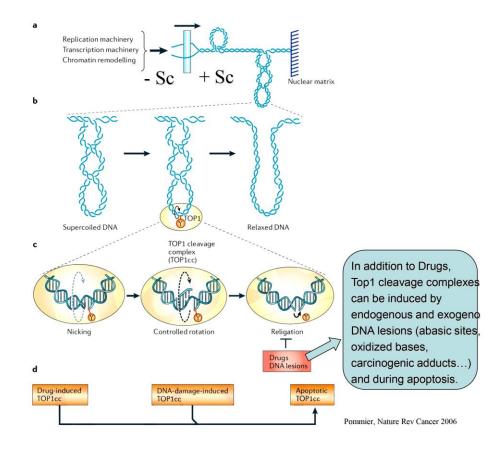
Top 1


Top1

```
TOP1 (nuclear Top1)
TOP1MT (mitochondrial Top1)
```



Top1 and Top2 differences

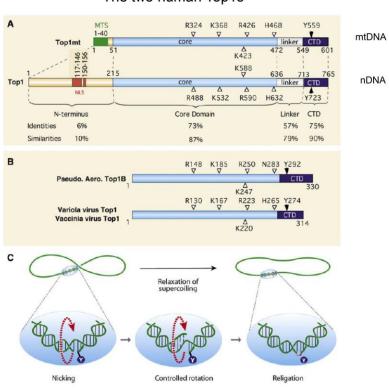
Biochemical differences between Top1 and Top2



- Trapped by camptothecins, indenoisoguinolines
- Trapped by etoposide, anthracyclines, quinolones

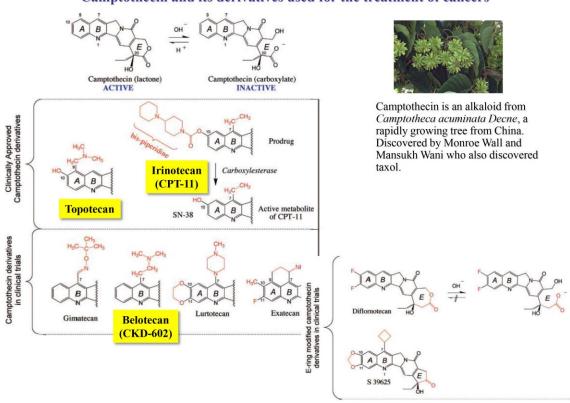
Relaxation of DNA

Top1

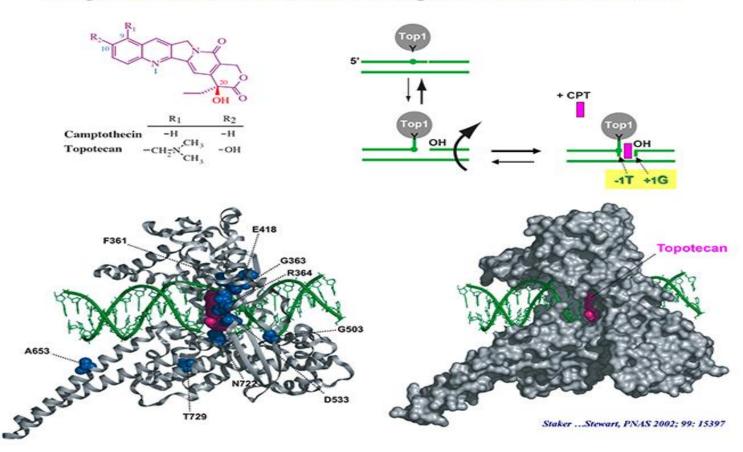

DNA supercoiling

DNAsupercoiling

In the atontext to fathromatin, awhere the arotation to fathouse the arotation to father the arotation and father the arotation are father than the arotation and father the arotation are father than the aro supercoiling@by@DNA@untwisting,@acting@as@swivelases",@whereas@OP2a@and@OP2b@emove@ writhe, !acting !as !! writh as es " !at !DNA !! to ssovers ! see !! OP 2 !! ection). !! Here Pare Brome Broasic facts Concerning DNA Brupercoiling That Pare Bre levant To Dopoisomerase P activity: 1272 Positive supercoiling Sc+) Itightens the IDNA the lix whereas the gative supercoiling Sc-) 2 facilitates I the I beautiful the I duplex I and I the I generation I b f is ingle-stranded i generation I b f is ingle-st Nucleosomeformationandadisassemblyabsorbsandaeleasessc-,aespectively. Polymerases\(\) enerate\(\)\$c+\(\)ahead\(\)and\(\)\$c-\(\)behind\(\)their\(\)tracks.\(\) Excess@frac+@arrests@NA@racking@enzymes@helicases@and@bolymerases),@uppresses@ transcription@longation@and@nitiation,@and@destabilizes@nucleosomes.@ Sc-facilitates IDNA melting during the initiation of the plication and transcription, ID-loop? formation@and@homologous@recombination@and@hucleosome@formation.@ Excess of the favors the formation of the laternative of NAB tructures of R-loops, the unine of the laternative of the laternat quadruplexes,@ight-handed@DNA@Z-DNA),@plectonemic@structures),@which@hen@absorb@ Sc-lipon their formation and attract regulatory proteins. 2


The Two Human Top 1s

The two human Top1s


Camptothecin

Camptothecin and its derivatives used for the treatment of cancers

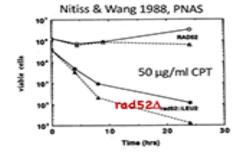
Interfacial inhibitor

Camptothecins as one of Nature's Paradigms for Interfacial Inhibitors

CPT analogs

758 Enget al.

1988, Mol. Pharmacol


TABLE 1

Activity of Cpt analogs in repair-deficient and/or topoisomerase I-deficient yeast mutants

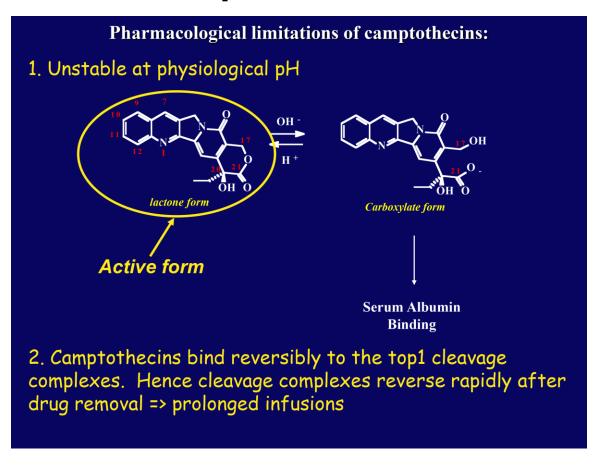
IC., is the concentration required to produce a zone of inhibition of 12 mm diameter. Values are mean a standard error of IC., values determined in multiple independent concentration-response studies. Values without standard errors represent results of single concentration-response studies.

			IC.	rad52	Δ	
Drug		Repair-proficient			Repair-deficient (rad52)	
	7091"	top!	7091***	Top#*	Rep1	
		•	rg/mi			
Cpt	>800	>800	25 ± 3	4.5 ± 0.4	>800	
9-CH ₂ O-Cpt	>800 >800	>800	21	5.1 ± 2.1	>800 >800 >800	
9-Nitro-Cpt		>800	180 ± 38	39 ±5	>800	
10-CH ₂ O-Cpt	>800	>800	29 ± 3	5.0 ± 1.4	>800	
10-CH ₂ O-7-ethyl-Cpt	>800	>800 >800	>800	9.4 ± 3.6	>800	
7-Methyl-Cpt	>800 >800	>800	91 ± 6	16 ± 0.2	>800 >800	
10-HO-Cpt	>800	>800	>800	210 ± 60	>800	
10-HO-7-ethyl-Cpt	>800	>800	>800	>800	>800	

[&]quot;70P1" refers to strain RS190 bearing the topoisomerase i-overproducing plasmid pWE3 GAL-TOP1 under induced conditions.

Homologous recombination is a key pathway for survival to camptothecins

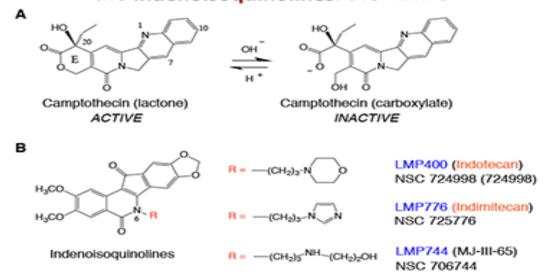
> Camptothecins were the 1st drugs showing synthetic lethality in homologous recombination deficient (HRD) cells


Why New Top1 Inhibitors?

Why New Top1 Inhibitors?

- 1. Because camptothecins are effective anticancer drugs. Hence, Top1 is a validated target for cancer treatment.
- 2. Because agent with a common target have different pharmacology, toxicology and exhibit different anticancer activity (for instance top2 poisons or tubulin inhibitors [colchicine <-> vinblastine]).
- 3. Because camptothecins have limitations:
 - Bone marrow and intestinal toxicity (adults).
 - Drug efflux substrates (ABCG2).
 - Chemically unstable: E-ring opening.

Pharmacological Limitations of Camptothecins:

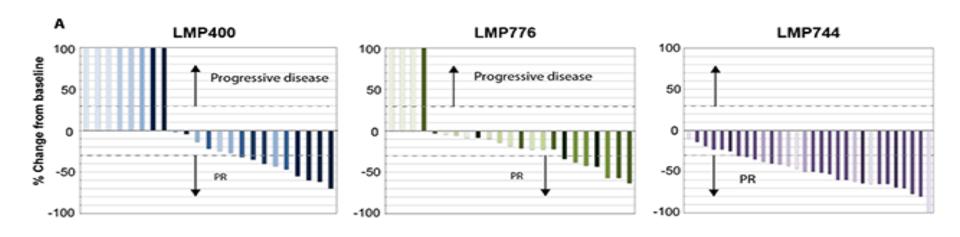

TOP1 inhibitors

Rationale for the development of non-camptothecin TOP1 inhibitors

- Camptothecin derivatives (Irinotecan and Topotecan) are potent anticancer agents and highly selective TOP1 inhibitors
- Camptothecins are selective for HR (BRCA) deficient tumors
- Camptothecins are the only chemical class of TOP1 inhibitors (many tubulin, TOP2...)
- Camptothecins have well-established limitations
 - ✓ Chemically unstable (inactivated within minutes in plasma)
 - Reversibly block TOPI-DNA complexes (long exposure required to maximize effect)
 - Eliminated from cancer cells by ABC drug efflux transporters (ABCG2 ABCB1)
 - ✓ Short plasma half-life (2-3 hours due to rapid clearance).
 - Dose-limiting bone marrow toxicity
 - ✓ Severe diarrhea (Irinotecan)

Indenoisoquinolines and LMPs

Non-camptothecin TOP1 inhibitors developed by the NCI-Purdue: the Indenoisoguinolines: the "LMPs"


LMP400 (Indotecan) and LMP776 (Imidotecan) completed Phase 1 LMP744 is in phase 1

Comparative oncology trials

Dog lymphoma

All drugs exhibit antitumor activity in primary dog lymphoma

Amy LeBlanc CCR COP

James Doroshow DCTD - CCR

Indotecan and imidotecan trials

Summary of the clinical oncology trial:

- The two clinical indenoisoquinolines, LMP400 (indotecan) and LMP776 (imidotecan) exhibit antitumor activity in dog lymphoma.
- The 3rd indenoisoquinoline, <u>LMP744 shows even greater antitumor activity</u>.
- The <u>dose limiting toxicity</u> of the indenoisoquinolines (MTD = 17.5 mg/m² for LMP776; MTD > 65 mg/m² for LMP400; MTD = 100 mg/m² for LMP744) is bone marrow suppression. <u>No diarrhea</u>.
- The PK of the LMPs shows long half-lives: LMP744: 17 h; LMP400: 11 h; LMP776: 6 h.
- <u>LMP744 shows remarkable tumor retention</u> and accumulation
- γH2AX response demonstrates target engagement for all drugs

Precision therapeutics

Precision therapeutics can be defined as the ability to:

- prescribing effective therapies only to those patients who will <u>respond</u> <u>effectively</u> (cure) ⇔ <u>Tumor molecular signature</u>: SLFN11 + HRD...
- while limiting toxicity to normal tissues and <u>minimizing side effects</u>
 ★ Targeted delivery

Camptothecins

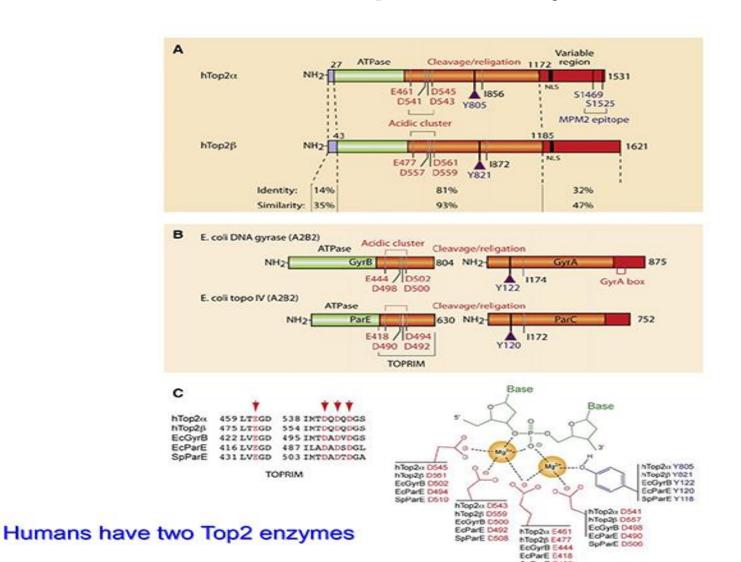
Second Generation Camptothecins with Targeted Delivery

Name	Company	Active Derivative	Formulation	
Onivyde™ = MM398*	Merrimack	(Payload) Irinotecan (CPT11)	(Conjugate; Target) Liposome	
CRLX101	Cerulean Pharma Inc.	Camptothecin	PEG	
NKTR-102	Nektar Therapeutics	Etirinotecan (20 position)	PEG (Pegol)	
PLX038	ProLynx	SN-38	PEG	
IMMU-132 =	Immunomedics	SN-38	ADC - TROP2 (TACSD2)	
Sacituzumab govitecan	(Seattle Genetics)	(20 position)		
IMMU-130 =	Immunomedics	SN-38	ADC-CEACAM5	
Labetuzumab govitecan				
DS-8201a	Daichi Sankyo	DXd (Exatecan)	ADC - HER2	
PEN-866	<u>Tarveda</u> Therapeutics	SN-38 (10 position)	HDC - Conjugate Hsp90	
NK012	Nippon Kayaku	SN-38	Polymeric micelles (PEG-polyglutamate)	
ALOS4-CPT	Ariel University	Camptothecin	HDC - ALOS-4	
SN38-TOA	CHOP Philadelphia	SN-38	Tocopherol oxyacetate nanoparticles	
		•	.	
* FDA Approved, October 2015 ** FDA Breakthrough, February 2016		Camptothecins as warheads	Tumor-specific delivery	

^{***} FDA Breakthrough, August 2017 (Breast)

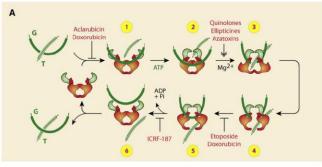
Top2

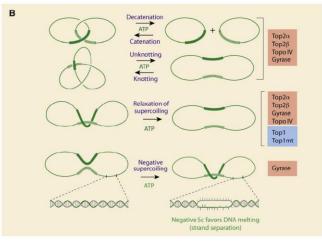
Top2


Top2α – TOP2A: Replication

Highly expressed in replicating and cancer cells

Top2β – TOP2B: Transcription


Expressed both in replicating and differentiated cells


Two Top2 enzymes

Top2

Top2 catalyze a broad range of reactions

Transcription

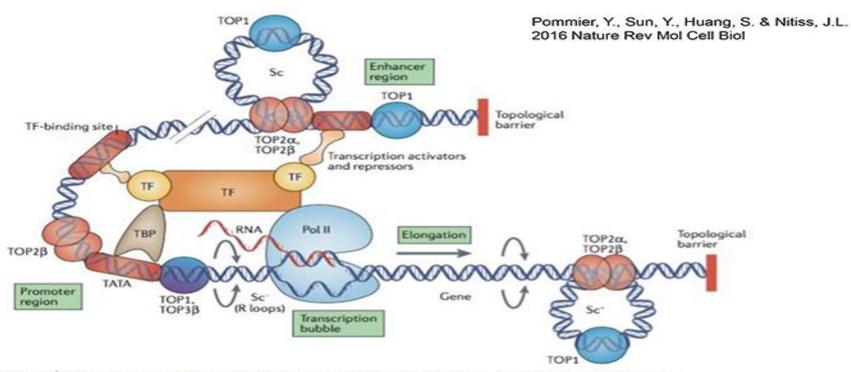
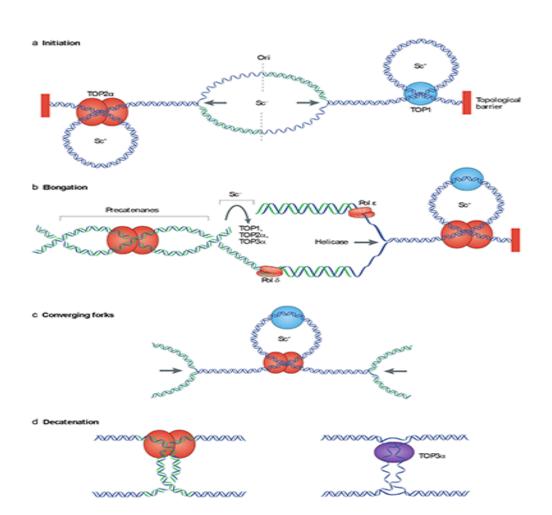
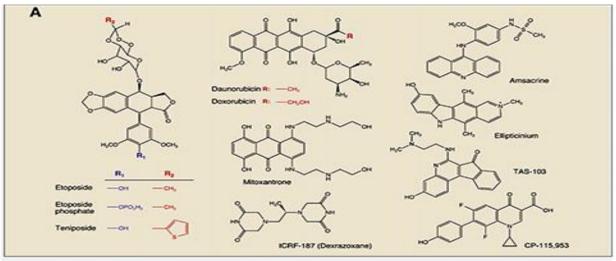
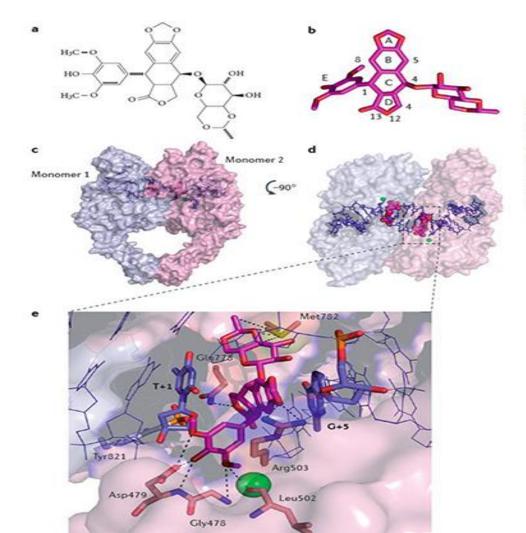



Figure 2 | Topoisomerases and transcription. Transcription incurs topological constraints that result from the progression of RNA polymerase II (Pol II). Positive supercoiling (Sc*) of the DNA template takes place ahead of the transcription bubble, which in turn obstructs further Pol II movement, and negative supercoiling (Sc*), which promotes the formation of RNA–DNA hybrids (R loops), accumulates behind it. TOP2 and especially TOP1 enzymes function ahead of Pol II to remove positive supercoils, whereas relaxation of negative supercoils behind the transcription apparatus relies on TOP1 and TOP3β. In addition, TOP1 regulates the activity of the transcription factor TATA-box-binding protein (TBP) at promoter TATA boxes independently of its catalytic activity. The formation of TOP2β-mediated transient DNA double-stranded breaks at promoter regions in certain genes is crucial for transcription activation. TOP1 is also recruited to certain enhancer regions to promote (ligand-dependent) enhancer activation by generating transient DNA single-stranded breaks. Topological barriers are genomic regions where the DNA is not free to rotate around its axis and require TOP1 and TOP2 to relax supercoils (Sc). TF, transcription factor.

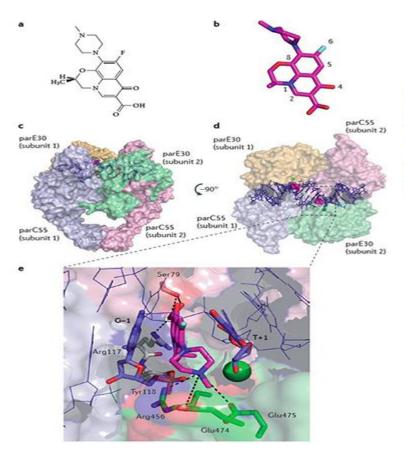

DNA replication

Functions of topoisomerases in DNA replication, a. Initiation of DNA replication requires separation of the two parental strands, which generates negative supercoiling (Sc-) at the origin of replication and positive supercoiling in the flanking regions due to topological barriers, such as nuclear matrix attachment sites or insulators. Positive supercoiling is dissipated by TOP1 and TOP2α to allow replication fork progression (arrows). b. Replication elongation generates positive supercoiling ahead of the replication fork and negative supercoiling behind it. Positive supercoiling is removed by TOP1 and TOP2a, whereas negative supercoiling can be removed by TOP1, TOP2 α or TOP3 α . TOP2 α can also remove precatenanes, which are formed when the fork rotates during elongation. c. Converging forks generate high positive supercoiling between them. d. Upon replication completion, catenanes are removed by TOP2α (left) and hemicatenanes by TOP3α (right). Topological barriers are genomic regions where the DNA is not free to rotate around its axis, for example owing to hindrance by macromolecular complexes.


Top2 drugs

Anticancer Top2-targeted drugs

Antibiotics Top2-targeted drugs


Etoposide

Structure of a topoisomerase II cleavage complex (Top2cc) trapped by etoposide (VP-16)

Levofloxacin

Antibacterials

Structure of a topoisomerase IV cleavage complex (Topo IVcc) trapped by the quinolone, levofloxacin

Interfacial inhibition

TRENDS in Pharmacological Sciences Vol.26 No.3 March 2005

Review

TRENDS in Pharmacological Sciences Vol.26 No.3 March 2005

of text provided by new actercostruct.co

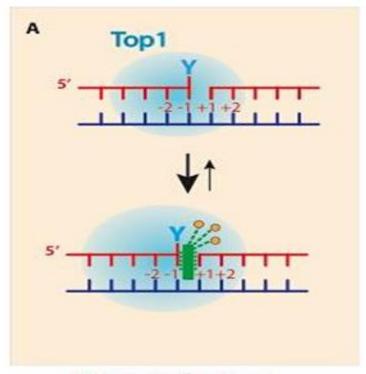
Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery

Yves Pommier¹ and Jacqueline Cherfils²

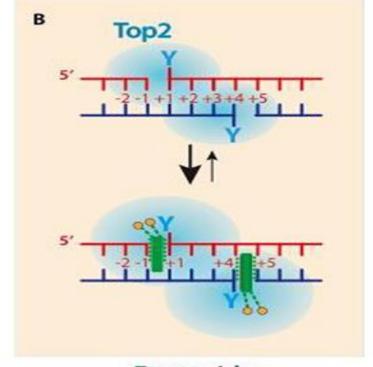
¹Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA

²Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif sur Yvette, France

NATURE REVIEWS | DRUG DISCOVERY


VOLUME 11 JANUARY 2012

Interfacial inhibitors: targeting macromolecular complexes


Yves Pommier¹ and Christophe Marchand¹

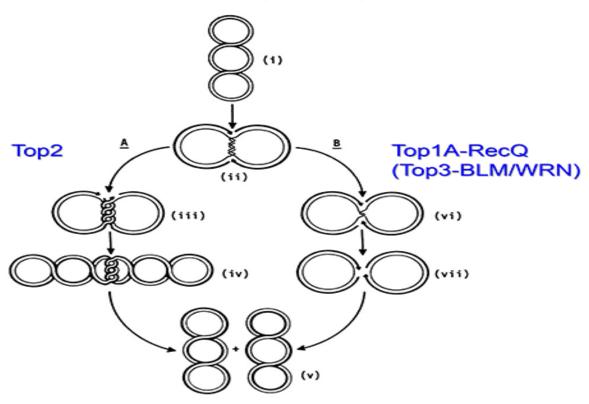
Abstract | Interfacial inhibitors belong to a broad class of natural products and synthetic drugs that are commonly used to treat cancers as well as bacterial and HIV infections. They bind selectively to interfaces as macromolecular machines assemble and are set in motion. The bound drugs transiently arrest the targeted molecular machines, which can initiate allosteric effects, or desynchronize macromolecular machines that normally function in concert. Here, we review five archetypical examples of interfacial inhibitors: the camptothecins, etoposide, the quinolone antibiotics, the vinca alkaloids and the novel anti-HIV inhibitor raltegravir. We discuss the common and diverging elements between interfacial and allosteric inhibitors and give a perspective for the rationale and methods used to discover novel interfacial inhibitors.

Topoisomerase drugs

Camptothecins Indenoisoquinolines

Etoposide Doxorubicin

Top 3


Top3

Top3α – TOP3A: Replication DNA topoisomerase (single-strands); resolves hemicatenanes and prevents recombinations

Top3β – TOP3B: Transcription DNA topoisomerase (R-loops); RNA topoisomerase

Decatenation

Decatenation Top2 vs. Top3

Top-3beta

Nature NeuroScience 2013

Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders

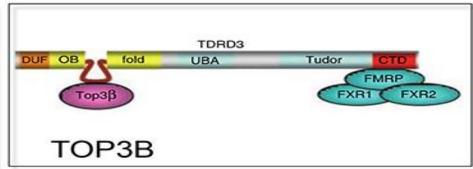
Georg Stoll^{1,32}, Olli P H Pietiläinen^{2–4,32}, Bastian Linder^{1,32}, Jaana Suvisaari⁵, Cornelia Brosi¹, William Hennah^{3,5}, Virpi Leppä³, Minna Torniainen⁵, Samuli Ripatti^{2,3}, Sirpa Ala-Mello⁶, Oliver Plöttner⁷, Karola Rehnström², Annamari Tuulio-Henriksson⁵, Teppo Varilo^{3,4}, Jonna Tallila², Kati Kristiansson³, Matti Isohanni⁸, Jaakko Kaprio^{3,5,9}, Johan G Eriksson^{10–14}, Olli T Raitakari^{15,16}, Terho Lehtimäki¹⁷, Marjo-Riitta Jarvelin^{18–21}, Veikko Salomaa²², Matthew Hurles², Hreinn Stefansson²³, Leena Peltonen^{2–4,24,25}, Patrick F Sullivan^{26,27}, Tiina Paunio^{3,4,28}, Jouko Lönnqvist^{5,6}, Mark J Daly^{29,30}, Utz Fischer¹, Nelson B Freimer³¹ & Aarno Palotie^{2,3,30}

Implicating particular genes in the generation of complex brain and behavior phenotypes requires multiple lines of evidence. The rarity of most high-impact genetic variants typically precludes the possibility of accruing statistical evidence that they are associated with a given trait. We found that the enrichment of a rare chromosome 22q11.22 deletion in a recently expanded Northern Finnish sub-isolate enabled the detection of association between *TOP3B* and both schizophrenia and cognitive impairment. Biochemical analysis of TOP3β revealed that this topoisomerase was a component of cytosolic messenger ribonucleoproteins (mRNPs) and was catalytically active on RNA. The recruitment of TOP3β to mRNPs was independent of RNA *cis*-elements and was coupled to the co-recruitment of FMRP, the disease gene product in fragile X mental retardation syndrome. Our results indicate a previously unknown role for TOP3β in mRNA metabolism and suggest that it is involved in neurodevelopmental disorders.

Top3β is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation

Dongyi Xu^{1,2,10}, Weiping Shen^{1,10}, Rong Guo¹, Yutong Xue¹, Wei Peng¹, Jian Sima³, Jay Yang⁴, Alexei Sharov⁵, Subramanya Srikantan⁶, Jiandong Yang¹, David Fox III¹, Yong Qian⁵, Jennifer L Martindale⁶, Yulan Piao⁵, James Machamer⁷, Samit R Joshi⁸, Subhasis Mohanty⁸, Albert C Shaw⁸, Thomas E Lloyd⁷, Grant W Brown⁴, Minoru S H Ko⁵, Myriam Gorospe⁶, Sige Zou⁹ & Weidong Wang¹

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3β may contribute to the pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.

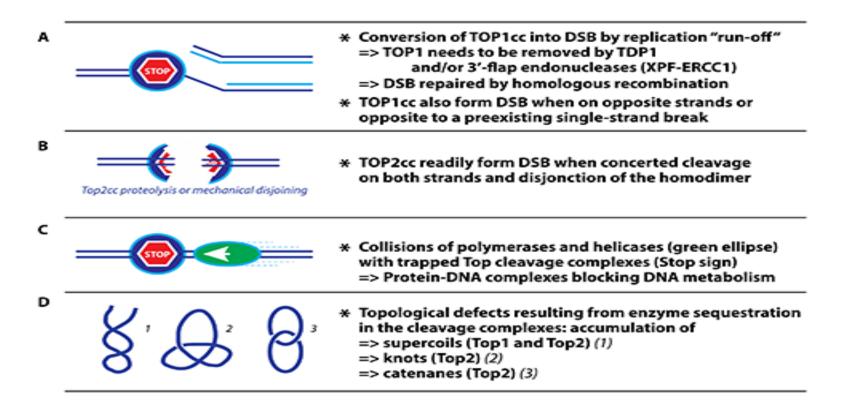

Top3A and Top3B

TOP3 alpha and beta function in different protein complexes and biological processes

Replication

TOP3A

Transcription

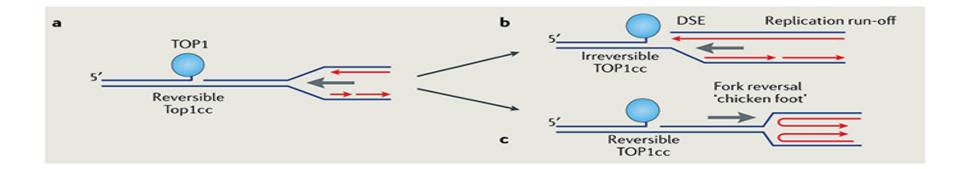

Topoisomerases

Topoisomerases
Genomic Integrity
and
Human diseases

DNA damage

Topoisomerase-induced DNA damage

Topoisomerases and disease


Causes	Consequences for TOP1 enzymes	Consequences for TOP2 enzymes
Anticancer drugs acting as interfacial inhibitors ¹⁵⁵	Trapping of TOP1cc by irinotecan, topotecan, indenoisoquinolines* and tumour-targeting camptothecin derivatives ^{3,154,155}	Trapping of TOP2cc by etoposide, teniposide, doxorubicin, epirubicin, idarubicin and mitoxantrone ⁴
Oxidative DNA lesions (8-oxoguanine, 8-oxoadenosine and 5-hydroxycytosine)	Induction and trapping of TOP1cc ^{218,219}	Induction and trapping of TOP2cc ²²⁰
Abasic sites and DNA mismatches	Formation of irreversible TOP1cc ²²¹	Formation of irreversible TOP2cc ^{220,222-225}
Carcinogenic base adducts (methylated bases, exocyclic adducts, benzo[a]pyrene adducts and crotonaldehyde adducts)	Induction and trapping of TOP1cc ²²⁶⁻²³²	Induction and trapping of TOP2cc ^{220,233-235}
Nicks and DNA strand breaks	Formation of irreversible TOP1cc, double-stranded breaks, genomic deletions and recombination ^{18,167,168,236,237}	Formation of irreversible TOP2cc ²³⁵
UV lesions (pyrimidine dimers and 6.4-photoproducts)	Induction of TOP1cc ^{238,239}	Enzymatic inhibition ²⁴⁰
Ribonucleotide incorporation into DNA	Formation of TOP1cc that generate nicks with 2',3'-cyclic phosphate ends and short deletions in repeat sequences ^{166–168}	Stabilization of TOP2cc with asymmetrical cleavage ^{20,169,241}
Natural and food products	Unknown	Stabilization of TOP2cc by flavones, tea and wine products ²⁰⁵
Genetic defects	Unrepaired TOP1cc due to TDP1 defects ^{177,206,210} in cooperation with ATM defects ¹⁷⁹	Unrepaired TOP2cc due to TDP2 defects ⁶⁹
Transcription activation	Stabilization of TOP1cc at enhancers ⁴²	Stabilization of TOP2cc at promoters 62.65.242.243

ATM, ataxia telangiectasia mutated; TDP, tyrosyl-DNA phosphodiesterase; TOPcc, topoisomerase cleavage complex.
*Indenoisoquinoline derivatives are in clinical trials.

Pommier, Y., Sun, Y., Huang, S. & Nitiss, J.L. 2016 Nature Rev Mol Cell Biol

Replicative DNA damage

Replicative DNA damage induced by TOP1cc (Topoisomerase I cleavage complexes)

Human diseases

DNA repair

Box 1 | DNA-protein crosslink repair pathways and human health

It is intriguing that germline mutations in almost all identified genes that encode components of the three main DNA-protein crosslink (DPC) repair pathways result in human syndromes that are characterized by genome instability, cancer predisposition, premature ageing and/or neurological pathologies. Whether all of these phenotypes are directly related to a defect in DPC repair or to other cellular functions of these proteins, is not entirely clear in all cases. The MRN complex, for example, has crucial functions during repair of DSBs, which are clearly related to the radiosensitivity and immunodeficiency that are observed in patients with mutations in genes that encode MRN subunits. Below, we briefly discuss the main diseases that are associated with mutations in DPC repair proteins.

Repair by tyrosyl-DNA phosphodiesterases

Spinocerebellar ataxia, autosomal recessive, with axonal neuropathy (SCAN1; OMIM: 607250) was first identified in a large Saudi Arabian family (nine affected individuals) that had homozygous mutations in the tyrosyl-DNA phosphodiesterase 1 (*TDP1*) gene, which map to chromosome 14q31–14q32 (REF. 91). Clinical features of SCAN1 include spinocerebellar ataxia (with late onset and slow progression) and areflexia, followed by signs of peripheral neuropathy, with the absence of non-neurological symptoms that are otherwise common in ataxia telangiectasia (telangiectasias, immunodeficiency, and cancer predisposition). Interestingly, the TDP1-H493R variant, which causes SCAN1, is not only catalytically compromised but also becomes covalently trapped in the process of repairing Top1 adducts⁹². However, despite this pathological gain-of-function of the TDP1-H493R variant, this form of SCAN1 is a recessive disorder, as wild-type TDP1 is able to repair the TDP1-H493R adducts in heterozygous individuals.

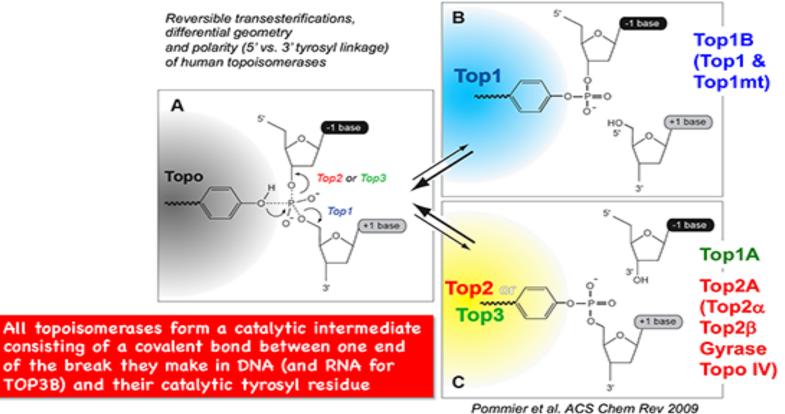
Spinocerebellar ataxia, autosomal recessive 23 (SCAR23; OMIM: 616949) has been identified in three Irish brothers who were born to consanguineous parents, and in an unrelated Egyptian case. SCAR23 has been associated with a homozygous mutation in the *TDP2* gene on chromosome 6p2 (REF. 40). Clinical features include progressive spinocerebellar ataxia, epilepsy and intellectual disabilities.

Repair by the MRN complex

Clinical features of ataxia telangiectasia-like disorder 1 (ATLD1; OMIM: 604391) include slowly progressive cerebellar degeneration that results in ataxia and oculomotor apraxia, and dysarthria, but without telangiectasia or major defects in immunoglobulin production, and without major cancer predisposition but with radiosensitivity. ATLD1 is caused by homozygous or compound heterozygous mutations in the MRE11 gene on chromosome 11q21 (REFS 93,94).

Nijmegen breakage syndrome (NBS) ataxia telangiectasia variant V1 (OMIM: 251260) is caused by homozygous or compound heterozygous mutations in the *NBS1* gene on chromosome 8q21. More than 90% of patients are homozygous for a five base pair deletion (657del5), which leads to a frameshift and truncation of the NBS1 protein $^{95-98}$. There are no reliable estimates of worldwide prevalence, but it is likely to approximate to 1 in 100,000 live births (most common in the Slavic populations of Eastern Europe) 99 . Clinical features of this syndrome include microcephaly, growth retardation, immunodeficiency, predisposition to cancer (mainly non-Hodgkin lymphoma), and radiosensitivity; neither ataxia nor telangiectasia are present. Compound heterozygous mutations in the *RAD50* gene (on chromosome 5q31.1) that give rise to low levels of RAD50 cause Nijmegen breakage syndrome-like disorder (NBSLD; OMIM 613078) 100 . Clinical features of NBSLD include microcephaly, growth retardation, chromosome instability, radioresistant DNA synthesis, radiation hypersensitivity and slight, non-progressive ataxia; there are no signs of telangiectasia or immunodeficiency and no evidence of cancer predisposition 100,101 .

Repair by DPC proteases


Homozygous or compound heterozygous mutations in the *SPRTN* gene (on chromosome 1q42) cause Ruijs–Aalfs syndrome (RJALS; OMIM: 616200). Clinical features of RJALS include growth retardation, early-onset hepatocellular carcinomas, micrognathia, chromosomal instability and sensitivity to genotoxic agents^{68,69}.

Covalent complexes

Repair of Topoisomerase covalent complexes

Catalytic intermediate

http://discover.nci.nih.gov/pommier/pommier.htm

Topoisomerase

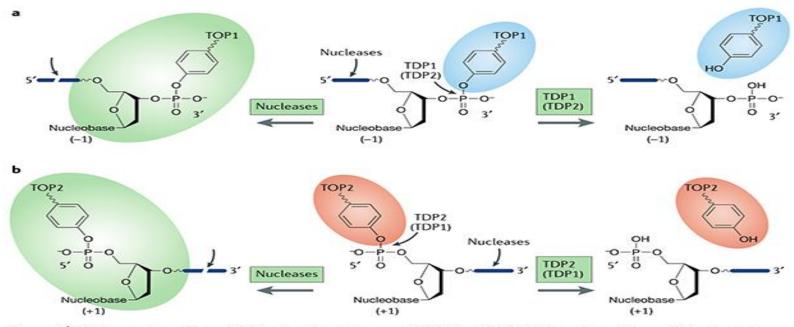
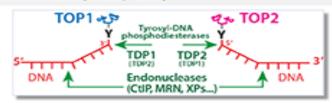


Figure 5 | TOPcc repair. a | Tyrosyl-DNA phosphodiesterase 1 (TDP1) and TDP2 (although much less efficiently and therefore shown in parentheses) cleave the TOP1 tyrosyl-DNA covalent bond (middle), releasing TOP1 and leaving a 3'-phosphate end (right) that needs to be further processed by polynucleotide kinase phosphatase (not shown).


b | TOP2 cleavage complexes (TOP2cc) are preferentially repaired by TDP2 and much less efficiently by TDP1 (middle) in vertebrates, releasing TOP2 and leaving a 5'-phosphate (right), which can be readily ligated. Yeast, which do not encode a TDP2 orthologue, use Tdp1 to excise both Top1cc and Top2cc. In the endonuclease pathways (left), topoisomerases are released with the segment of DNA to which they are attached by the action of endonucleases; the polarity is opposite for TOP1cc (part a) and TOP2cc (part b).

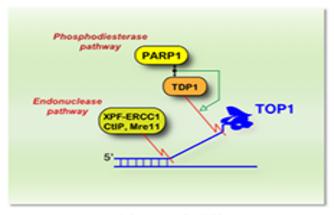
Pommier, Y., Sun, Y., Huang, S. & Nitiss, J.L. 2016 Nature Rev Mol Cell Biol

Repair pathways

Parallel repair pathways for abortive topoisomerase cleavage complexes:

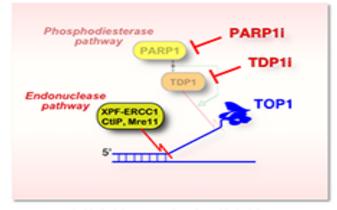
- Excision by two dissimilar tyrosyl DNA phosphodiesterases: TDP1 and TDP2
- Endonucleases (Mre11; NER...)

TDP1 has a broad range of DNA repair functions beyond TOP1cc repair:


- 3'-end cleansing activity: 3'-phosphoglycolates (H₂O₂, bleomycin, IR)
- 3'-dRP (MMS, alkylating agents) (JBC)*
- Excises chain terminator nucleosides (AraC, AZT, abacavir, sapacitabine) (JBC; NAR)*; 3'-nucleosidase
- Both in the nucleus and mitochondria (EMBO J)
- Role in genomic stability in the nervous system (PNAS)*
- Coupled with PARP1 (JBC; DNAR)*
- Also excises TOP2cc (JBC)* (no TDP2 in yeast)

TDP2 also has DNA repair functions beyond TOP2cc:

- S'-end tyrosyl-DNA phosphodiesterase: VpG unlinkase (poliovirus replication) (HPV replication)
- <u>Crystal structures (NSMB; JBC)*</u>: similarity with APE1 (Mg²*; 5 fingers) but different from TDP1
- Recruitment to TOP2cc by Ub (JBC)*
- Activity on TOP2cc requires denaturation/ proteolysis (JBC)*


Parallel repair pathways

Normal cells have parallel repair pathways for abortive TOP1cc

TDP1 is coupled with PARP1

Discovered this review cycle (NAR; DNAR; JBC)

PARPI inhibitors synergize with TOP1 inhibitors (Sci Transi Med 2014; JPET 2014)

>> Synthetic letholity
in Mre11- or X9F-ERGC1-deficient concers?

Acknowledgements

Acknowledgements for Indenoisoquinolines

- Mark Cushman (Purdue University)
- William Bonner (LMP-CCR)
- Smitha Antony (LMP-CCR)
- George Vande Woude (DBS[■])
- Susan Bates (COB-CCR)
- Robert Wiltrout (CCR)
- Patricia Steeg (LMP-CCR)
- Lyuba Varticovski (LHC-CCR)
- James Doroshow (DCTD-LMP-NCI)
- Joseph Tomaszewski (DCTD-NCI)
- Jerry Collins (DTP-DCTD-NCI)
- Barbara Mroczkowski (DCTD)
- Ralph Parchment (SAIC-FCRDC)
- Bob Kinders (SAIC-FCRDC)

- Melinda Hollingshead (DTP)
- Jiuping Ji (SAIC-FCRDC)
- Joe Covey (DTP)
- Liz Glaze (DTP)
- Prabhakar Risbood (DTP)
- Jim Cradock (DTP)
- Rao Vishnuvajjala (DTP)
- Sima Hayavi (DTP)
- Tiziano DiPaolo (DCTP)
- Vali Sevastita (DTP)
- Gina Uhlenbrauck (DTP)
- Shivaani Kummar (COB-CCR)
- Giuseppe Giaconne (COB-CCR)

Center for Cancer Research

